Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Hierarchical Relational Learning for Few-Shot Knowledge Graph Completion (2209.01205v4)

Published 2 Sep 2022 in cs.LG, cs.CV, and cs.AI

Abstract: Knowledge graphs (KGs) are powerful in terms of their inference abilities, but are also notorious for their incompleteness and long-tail distribution of relations. To address these challenges and expand the coverage of KGs, few-shot KG completion aims to make predictions for triplets involving novel relations when only a few training triplets are provided as reference. Previous methods have focused on designing local neighbor aggregators to learn entity-level information and/or imposing a potentially invalid sequential dependency assumption at the triplet level to learn meta relation information. However, pairwise triplet-level interactions and context-level relational information have been largely overlooked for learning meta representations of few-shot relations. In this paper, we propose a hierarchical relational learning method (HiRe) for few-shot KG completion. By jointly capturing three levels of relational information (entity-level, triplet-level and context-level), HiRe can effectively learn and refine meta representations of few-shot relations, and thus generalize well to new unseen relations. Extensive experiments on benchmark datasets validate the superiority of HiRe over state-of-the-art methods. The code can be found in https://github.com/alexhw15/HiRe.git.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.