Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 177 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 119 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

The distance backbone of directed networks (2209.01181v1)

Published 2 Sep 2022 in cs.SI, cs.DS, and physics.soc-ph

Abstract: In weighted graphs the shortest path between two nodes is often reached through an indirect path, out of all possible connections, leading to structural redundancies which play key roles in the dynamics and evolution of complex networks. We have previously developed a parameter-free, algebraically-principled methodology to uncover such redundancy and reveal the distance backbone of weighted graphs, which has been shown to be important in transmission dynamics, inference of important paths, and quantifying the robustness of networks. However, the method was developed for undirected graphs. Here we expand this methodology to weighted directed graphs and study the redundancy and robustness found in nine networks ranging from social, biomedical, and technical systems. We found that similarly to undirected graphs, directed graphs in general also contain a large amount of redundancy, as measured by the size of their (directed) distance backbone. Our methodology adds an additional tool to the principled sparsification of complex networks and the measure of their robustness.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.