Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Learning While Scheduling in Multi-Server Systems with Unknown Statistics: MaxWeight with Discounted UCB (2209.01126v3)

Published 2 Sep 2022 in cs.LG and cs.NI

Abstract: Multi-server queueing systems are widely used models for job scheduling in machine learning, wireless networks, crowdsourcing, and healthcare systems. This paper considers a multi-server system with multiple servers and multiple types of jobs, where different job types require different amounts of processing time at different servers. The goal is to schedule jobs on servers without knowing the statistics of the processing times. To fully utilize the processing power of the servers, it is known that one has to at least learn the service rates of different job types on different servers. Prior works on this topic decouple the learning and scheduling phases which leads to either excessive exploration or extremely large job delays. We propose a new algorithm, which combines the MaxWeight scheduling policy with discounted upper confidence bound (UCB), to simultaneously learn the statistics and schedule jobs to servers. We prove that under our algorithm the asymptotic average queue length is bounded by one divided by the traffic slackness, which is order-wise optimal. We also obtain an exponentially decaying probability tail bound for any-time queue length. These results hold for both stationary and nonstationary service rates. Simulations confirm that the delay performance of our algorithm is several orders of magnitude better than previously proposed algorithms.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.