Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Elastic-Degenerate String Matching with 1 Error (2209.01095v1)

Published 2 Sep 2022 in cs.DS

Abstract: An elastic-degenerate string is a sequence of $n$ finite sets of strings of total length $N$, introduced to represent a set of related DNA sequences, also known as a pangenome. The ED string matching (EDSM) problem consists in reporting all occurrences of a pattern of length $m$ in an ED text. This problem has recently received some attention by the combinatorial pattern matching community, culminating in an $\tilde{\mathcal{O}}(nm{\omega-1})+\mathcal{O}(N)$-time algorithm [Bernardini et al., SIAM J. Comput. 2022], where $\omega$ denotes the matrix multiplication exponent and the $\tilde{\mathcal{O}}(\cdot)$ notation suppresses polylog factors. In the $k$-EDSM problem, the approximate version of EDSM, we are asked to report all pattern occurrences with at most $k$ errors. $k$-EDSM can be solved in $\mathcal{O}(k2mG+kN)$ time, under edit distance, or $\mathcal{O}(kmG+kN)$ time, under Hamming distance, where $G$ denotes the total number of strings in the ED text [Bernardini et al., Theor. Comput. Sci. 2020]. Unfortunately, $G$ is only bounded by $N$, and so even for $k=1$, the existing algorithms run in $\Omega(mN)$ time in the worst case. In this paper we show that $1$-EDSM can be solved in $\mathcal{O}((nm2 + N)\log m)$ or $\mathcal{O}(nm3 + N)$ time under edit distance. For the decision version, we present a faster $\mathcal{O}(nm2\sqrt{\log m} + N\log\log m)$-time algorithm. We also show that $1$-EDSM can be solved in $\mathcal{O}(nm2 + N\log m)$ time under Hamming distance. Our algorithms for edit distance rely on non-trivial reductions from $1$-EDSM to special instances of classic computational geometry problems (2d rectangle stabbing or 2d range emptiness), which we show how to solve efficiently. In order to obtain an even faster algorithm for Hamming distance, we rely on employing and adapting the $k$-errata trees for indexing with errors [Cole et al., STOC 2004].

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.