Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Elastic-Degenerate String Matching with 1 Error (2209.01095v1)

Published 2 Sep 2022 in cs.DS

Abstract: An elastic-degenerate string is a sequence of $n$ finite sets of strings of total length $N$, introduced to represent a set of related DNA sequences, also known as a pangenome. The ED string matching (EDSM) problem consists in reporting all occurrences of a pattern of length $m$ in an ED text. This problem has recently received some attention by the combinatorial pattern matching community, culminating in an $\tilde{\mathcal{O}}(nm{\omega-1})+\mathcal{O}(N)$-time algorithm [Bernardini et al., SIAM J. Comput. 2022], where $\omega$ denotes the matrix multiplication exponent and the $\tilde{\mathcal{O}}(\cdot)$ notation suppresses polylog factors. In the $k$-EDSM problem, the approximate version of EDSM, we are asked to report all pattern occurrences with at most $k$ errors. $k$-EDSM can be solved in $\mathcal{O}(k2mG+kN)$ time, under edit distance, or $\mathcal{O}(kmG+kN)$ time, under Hamming distance, where $G$ denotes the total number of strings in the ED text [Bernardini et al., Theor. Comput. Sci. 2020]. Unfortunately, $G$ is only bounded by $N$, and so even for $k=1$, the existing algorithms run in $\Omega(mN)$ time in the worst case. In this paper we show that $1$-EDSM can be solved in $\mathcal{O}((nm2 + N)\log m)$ or $\mathcal{O}(nm3 + N)$ time under edit distance. For the decision version, we present a faster $\mathcal{O}(nm2\sqrt{\log m} + N\log\log m)$-time algorithm. We also show that $1$-EDSM can be solved in $\mathcal{O}(nm2 + N\log m)$ time under Hamming distance. Our algorithms for edit distance rely on non-trivial reductions from $1$-EDSM to special instances of classic computational geometry problems (2d rectangle stabbing or 2d range emptiness), which we show how to solve efficiently. In order to obtain an even faster algorithm for Hamming distance, we rely on employing and adapting the $k$-errata trees for indexing with errors [Cole et al., STOC 2004].

Citations (3)

Summary

We haven't generated a summary for this paper yet.