Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Event-Driven Tactile Learning with Location Spiking Neurons (2209.01080v1)

Published 23 Jul 2022 in cs.NE, cs.AI, cs.LG, and cs.RO

Abstract: The sense of touch is essential for a variety of daily tasks. New advances in event-based tactile sensors and Spiking Neural Networks (SNNs) spur the research in event-driven tactile learning. However, SNN-enabled event-driven tactile learning is still in its infancy due to the limited representative abilities of existing spiking neurons and high spatio-temporal complexity in the data. In this paper, to improve the representative capabilities of existing spiking neurons, we propose a novel neuron model called "location spiking neuron", which enables us to extract features of event-based data in a novel way. Moreover, based on the classical Time Spike Response Model (TSRM), we develop a specific location spiking neuron model - Location Spike Response Model (LSRM) that serves as a new building block of SNNs. Furthermore, we propose a hybrid model which combines an SNN with TSRM neurons and an SNN with LSRM neurons to capture the complex spatio-temporal dependencies in the data. Extensive experiments demonstrate the significant improvements of our models over other works on event-driven tactile learning and show the superior energy efficiency of our models and location spiking neurons, which may unlock their potential on neuromorphic hardware.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.