Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Upper Bound on the Reliability Function of the DMC (2209.00968v1)

Published 2 Sep 2022 in cs.IT and math.IT

Abstract: We derive a new upper bound on the reliability function for channel coding over discrete memoryless channels. Our bounding technique relies on two main elements: (i) adding an auxiliary genie-receiver that reveals to the original receiver a list of codewords including the transmitted one, which satisfy a certain type property, and (ii) partitioning (most of) the list into subsets of codewords that satisfy a certain pairwise-symmetry property, which facilitates lower bounding of the average error probability by the pairwise error probability within a subset. We compare the obtained bound to the Shannon-Gallager-Berlekamp straight-line bound, the sphere-packing bound, and an amended version of Blahut's bound. Our bound is shown to be at least as tight for all rates, with cases of stricter tightness in a certain range of low rates, compared to all three aforementioned bounds. Our derivation is performed in a unified manner which is valid for any rate, as well as for a wide class of additive decoding metrics, whenever the corresponding zero-error capacity is zero. We further present a relatively simple function that may be regarded as an approximation to the reliability function in some cases. We also present a dual form of the bound, and discuss a looser bound of a simpler form, which is analyzed for the case of the binary symmetric channel with maximum likelihood decoding.

Citations (1)

Summary

We haven't generated a summary for this paper yet.