Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Domain Adaptation from Scratch (2209.00830v1)

Published 2 Sep 2022 in cs.CL, cs.AI, and cs.LG

Abstract: Natural language processing (NLP) algorithms are rapidly improving but often struggle when applied to out-of-distribution examples. A prominent approach to mitigate the domain gap is domain adaptation, where a model trained on a source domain is adapted to a new target domain. We present a new learning setup, ``domain adaptation from scratch'', which we believe to be crucial for extending the reach of NLP to sensitive domains in a privacy-preserving manner. In this setup, we aim to efficiently annotate data from a set of source domains such that the trained model performs well on a sensitive target domain from which data is unavailable for annotation. Our study compares several approaches for this challenging setup, ranging from data selection and domain adaptation algorithms to active learning paradigms, on two NLP tasks: sentiment analysis and Named Entity Recognition. Our results suggest that using the abovementioned approaches eases the domain gap, and combining them further improves the results.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube