Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Optimal Diagonal Preconditioning (2209.00809v2)

Published 2 Sep 2022 in math.OC, cs.DS, cs.LG, and stat.ML

Abstract: Preconditioning has long been a staple technique in optimization, often applied to reduce the condition number of a matrix and speed up the convergence of algorithms. Although there are many popular preconditioning techniques in practice, most lack guarantees on reductions in condition number. Moreover, the degree to which we can improve over existing heuristic preconditioners remains an important practical question. In this paper, we study the problem of optimal diagonal preconditioning that achieves maximal reduction in the condition number of any full-rank matrix by scaling its rows and/or columns. We first reformulate the problem as a quasi-convex problem and provide a simple algorithm based on bisection. Then we develop an interior point algorithm with $O(\log(1/\epsilon))$ iteration complexity, where each iteration consists of a Newton update based on the Nesterov-Todd direction. Next, we specialize to one-sided optimal diagonal preconditioning problems, and demonstrate that they can be formulated as standard dual SDP problems. We then develop efficient customized solvers and study the empirical performance of our optimal diagonal preconditioning procedures through extensive experiments on large matrices. Our findings suggest that optimal diagonal preconditioners can significantly improve upon existing heuristics-based diagonal preconditioners at reducing condition numbers and speeding up iterative methods. Moreover, our implementation of customized solvers, combined with a random row/column sampling step, can find near-optimal diagonal preconditioners for matrices up to size 200,000 in reasonable time, demonstrating their practical appeal.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube