Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Almost-Sure Intention Deception Planning that Exploits Imperfect Observers (2209.00573v1)

Published 1 Sep 2022 in cs.GT and cs.AI

Abstract: Intention deception involves computing a strategy which deceives the opponent into a wrong belief about the agent's intention or objective. This paper studies a class of probabilistic planning problems with intention deception and investigates how a defender's limited sensing modality can be exploited by an attacker to achieve its attack objective almost surely (with probability one) while hiding its intention. In particular, we model the attack planning in a stochastic system modeled as a Markov decision process (MDP). The attacker is to reach some target states while avoiding unsafe states in the system and knows that his behavior is monitored by a defender with partial observations. Given partial state observations for the defender, we develop qualitative intention deception planning algorithms that construct attack strategies to play against an action-visible defender and an action-invisible defender, respectively. The synthesized attack strategy not only ensures the attack objective is satisfied almost surely but also deceives the defender into believing that the observed behavior is generated by a normal/legitimate user and thus failing to detect the presence of an attack. We show the proposed algorithms are correct and complete and illustrate the deceptive planning methods with examples.

Citations (4)

Summary

We haven't generated a summary for this paper yet.