Papers
Topics
Authors
Recent
2000 character limit reached

Continuous-time Particle Filtering for Latent Stochastic Differential Equations (2209.00173v1)

Published 1 Sep 2022 in cs.LG

Abstract: Particle filtering is a standard Monte-Carlo approach for a wide range of sequential inference tasks. The key component of a particle filter is a set of particles with importance weights that serve as a proxy of the true posterior distribution of some stochastic process. In this work, we propose continuous latent particle filters, an approach that extends particle filtering to the continuous-time domain. We demonstrate how continuous latent particle filters can be used as a generic plug-in replacement for inference techniques relying on a learned variational posterior. Our experiments with different model families based on latent neural stochastic differential equations demonstrate superior performance of continuous-time particle filtering in inference tasks like likelihood estimation and sequential prediction for a variety of stochastic processes.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.