Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Evaluating generative audio systems and their metrics (2209.00130v1)

Published 31 Aug 2022 in cs.SD, cs.LG, and eess.AS

Abstract: Recent years have seen considerable advances in audio synthesis with deep generative models. However, the state-of-the-art is very difficult to quantify; different studies often use different evaluation methodologies and different metrics when reporting results, making a direct comparison to other systems difficult if not impossible. Furthermore, the perceptual relevance and meaning of the reported metrics in most cases unknown, prohibiting any conclusive insights with respect to practical usability and audio quality. This paper presents a study that investigates state-of-the-art approaches side-by-side with (i) a set of previously proposed objective metrics for audio reconstruction, and with (ii) a listening study. The results indicate that currently used objective metrics are insufficient to describe the perceptual quality of current systems.

Citations (17)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.