Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 171 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 43 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Supervised Contrastive Learning with Hard Negative Samples (2209.00078v2)

Published 31 Aug 2022 in cs.LG

Abstract: Through minimization of an appropriate loss function such as the InfoNCE loss, contrastive learning (CL) learns a useful representation function by pulling positive samples close to each other while pushing negative samples far apart in the embedding space. The positive samples are typically created using "label-preserving" augmentations, i.e., domain-specific transformations of a given datum or anchor. In absence of class information, in unsupervised CL (UCL), the negative samples are typically chosen randomly and independently of the anchor from a preset negative sampling distribution over the entire dataset. This leads to class-collisions in UCL. Supervised CL (SCL), avoids this class collision by conditioning the negative sampling distribution to samples having labels different from that of the anchor. In hard-UCL (H-UCL), which has been shown to be an effective method to further enhance UCL, the negative sampling distribution is conditionally tilted, by means of a hardening function, towards samples that are closer to the anchor. Motivated by this, in this paper we propose hard-SCL (H-SCL) {wherein} the class conditional negative sampling distribution {is tilted} via a hardening function. Our simulation results confirm the utility of H-SCL over SCL with significant performance gains {in downstream classification tasks.} Analytically, we show that {in the} limit of infinite negative samples per anchor and a suitable assumption, the {H-SCL loss} is upper bounded by the {H-UCL loss}, thereby justifying the utility of H-UCL {for controlling} the H-SCL loss in the absence of label information. Through experiments on several datasets, we verify the assumption as well as the claimed inequality between H-UCL and H-SCL losses. We also provide a plausible scenario where H-SCL loss is lower bounded by UCL loss, indicating the limited utility of UCL in controlling the H-SCL loss.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com
X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: