Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

Deep-Learning-Based Device Fingerprinting for Increased LoRa-IoT Security: Sensitivity to Network Deployment Changes (2208.14964v1)

Published 31 Aug 2022 in cs.LG and cs.CR

Abstract: Deep-learning-based device fingerprinting has recently been recognized as a key enabler for automated network access authentication. Its robustness to impersonation attacks due to the inherent difficulty of replicating physical features is what distinguishes it from conventional cryptographic solutions. Although device fingerprinting has shown promising performances, its sensitivity to changes in the network operating environment still poses a major limitation. This paper presents an experimental framework that aims to study and overcome the sensitivity of LoRa-enabled device fingerprinting to such changes. We first begin by describing RF datasets we collected using our LoRa-enabled wireless device testbed. We then propose a new fingerprinting technique that exploits out-of-band distortion information caused by hardware impairments to increase the fingerprinting accuracy. Finally, we experimentally study and analyze the sensitivity of LoRa RF fingerprinting to various network setting changes. Our results show that fingerprinting does relatively well when the learning models are trained and tested under the same settings. However, when trained and tested under different settings, these models exhibit moderate sensitivity to channel condition changes and severe sensitivity to protocol configuration and receiver hardware changes when IQ data is used as input. However, with FFT data is used as input, they perform poorly under any change.

Citations (21)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.