Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 82 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

HyTGraph: GPU-Accelerated Graph Processing with Hybrid Transfer Management (2208.14935v1)

Published 31 Aug 2022 in cs.DC

Abstract: Processing large graphs with memory-limited GPU needs to resolve issues of host-GPU data transfer, which is a key performance bottleneck. Existing GPU-accelerated graph processing frameworks reduce the data transfers by managing the active subgraph transfer at runtime. Some frameworks adopt explicit transfer management approaches based on explicit memory copy with filter or compaction. In contrast, others adopt implicit transfer management approaches based on on-demand access with zero-copy or unified-memory. Having made intensive analysis, we find that as the active vertices evolve, the performance of the two approaches varies in different workloads. Due to heavy redundant data transfers, high CPU compaction overhead, or low bandwidth utilization, adopting a single approach often results in suboptimal performance. In this work, we propose a hybrid transfer management approach to take the merits of both the two approaches at runtime, with an objective to achieve the shortest execution time in each iteration. Based on the hybrid approach, we present HytGraph, a GPU-accelerated graph processing framework, which is empowered by a set of effective task scheduling optimizations to improve the performance. Our experimental results on real-world and synthesized graphs demonstrate that HyTGraph achieves up to 10.27X speedup over existing GPU-accelerated graph processing systems including Grus, Subway, and EMOGI.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.