Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 470 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Modelling and Detection of Driver's Fatigue using Ontology (2208.14694v1)

Published 31 Aug 2022 in cs.AI, cs.CY, and cs.HC

Abstract: Road accidents have become the eight leading cause of death all over the world. Lots of these accidents are due to a driver's inattention or lack of focus, due to fatigue. Various factors cause driver's fatigue. This paper considers all the measureable data that manifest driver's fatigue, namely those manifested in the vehicle measureable data while driving as well as the driver's physical and physiological data. Each of the three main factors are further subdivided into smaller details. For example, the vehicle's data is composed of the values obtained from the steering wheel's angle, yaw angle, the position on the lane, and the speed and acceleration of the vehicle while moving. Ontological knowledge and rules for driver fatigue detection are to be integrated into an intelligent system so that on the first sign of dangerous level of fatigue is detected, a warning notification is sent to the driver. This work is intended to contribute to safe road driving.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.