Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 154 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 119 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 362 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Application of Data Encryption in Chinese Named Entity Recognition (2208.14627v1)

Published 31 Aug 2022 in cs.CR and cs.CL

Abstract: Recently, with the continuous development of deep learning, the performance of named entity recognition tasks has been dramatically improved. However, the privacy and the confidentiality of data in some specific fields, such as biomedical and military, cause insufficient data to support the training of deep neural networks. In this paper, we propose an encryption learning framework to address the problems of data leakage and inconvenient disclosure of sensitive data in certain domains. We introduce multiple encryption algorithms to encrypt training data in the named entity recognition task for the first time. In other words, we train the deep neural network using the encrypted data. We conduct experiments on six Chinese datasets, three of which are constructed by ourselves. The experimental results show that the encryption method achieves satisfactory results. The performance of some models trained with encrypted data even exceeds the performance of the unencrypted method, which verifies the effectiveness of the introduced encryption method and solves the problem of data leakage to a certain extent.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.