Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 159 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 118 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

How Readable is Model-generated Code? Examining Readability and Visual Inspection of GitHub Copilot (2208.14613v2)

Published 31 Aug 2022 in cs.SE

Abstract: Background: Recent advancements in LLMs have motivated the practical use of such models in code generation and program synthesis. However, little is known about the effects of such tools on code readability and visual attention in practice. Objective: In this paper, we focus on GitHub Copilot to address the issues of readability and visual inspection of model generated code. Readability and low complexity are vital aspects of good source code, and visual inspection of generated code is important in light of automation bias. Method: Through a human experiment (n=21) we compare model generated code to code written completely by human programmers. We use a combination of static code analysis and human annotators to assess code readability, and we use eye tracking to assess the visual inspection of code. Results: Our results suggest that model generated code is comparable in complexity and readability to code written by human pair programmers. At the same time, eye tracking data suggests, to a statistically significant level, that programmers direct less visual attention to model generated code. Conclusion: Our findings highlight that reading code is more important than ever, and programmers should beware of complacency and automation bias with model generated code.

Citations (50)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.