Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 171 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 43 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

SIM-Trans: Structure Information Modeling Transformer for Fine-grained Visual Categorization (2208.14607v1)

Published 31 Aug 2022 in cs.CV

Abstract: Fine-grained visual categorization (FGVC) aims at recognizing objects from similar subordinate categories, which is challenging and practical for human's accurate automatic recognition needs. Most FGVC approaches focus on the attention mechanism research for discriminative regions mining while neglecting their interdependencies and composed holistic object structure, which are essential for model's discriminative information localization and understanding ability. To address the above limitations, we propose the Structure Information Modeling Transformer (SIM-Trans) to incorporate object structure information into transformer for enhancing discriminative representation learning to contain both the appearance information and structure information. Specifically, we encode the image into a sequence of patch tokens and build a strong vision transformer framework with two well-designed modules: (i) the structure information learning (SIL) module is proposed to mine the spatial context relation of significant patches within the object extent with the help of the transformer's self-attention weights, which is further injected into the model for importing structure information; (ii) the multi-level feature boosting (MFB) module is introduced to exploit the complementary of multi-level features and contrastive learning among classes to enhance feature robustness for accurate recognition. The proposed two modules are light-weighted and can be plugged into any transformer network and trained end-to-end easily, which only depends on the attention weights that come with the vision transformer itself. Extensive experiments and analyses demonstrate that the proposed SIM-Trans achieves state-of-the-art performance on fine-grained visual categorization benchmarks. The code is available at https://github.com/PKU-ICST-MIPL/SIM-Trans_ACMMM2022.

Citations (68)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com