Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 398 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Biased Bytes: On the Validity of Estimating Food Consumption from Digital Traces (2208.14401v1)

Published 30 Aug 2022 in cs.SI, cs.CY, and cs.HC

Abstract: Given that measuring food consumption at a population scale is a challenging task, researchers have begun to explore digital traces (e.g., from social media or from food-tracking applications) as potential proxies. However, it remains unclear to what extent digital traces reflect real food consumption. The present study aims to bridge this gap by quantifying the link between dietary behaviors as captured via social media (Twitter) v.s. a food-tracking application (MyFoodRepo). We focus on the case of Switzerland and contrast images of foods collected through the two platforms, by designing and deploying a novel crowdsourcing framework for estimating biases with respect to nutritional properties and appearance. We find that the food type distributions in social media v.s. food tracking diverge; e.g., bread is 2.5 times more frequent among consumed and tracked foods than on Twitter, whereas cake is 12 times more frequent on Twitter. Controlling for the different food type distributions, we contrast consumed and tracked foods of a given type with foods shared on Twitter. Across food types, food posted on Twitter is perceived as tastier, more caloric, less healthy, less likely to have been consumed at home, more complex, and larger-portioned, compared to consumed and tracked foods. The fact that there is a divergence between food consumption as measured via the two platforms implies that at least one of the two is not a faithful representation of the true food consumption in the general Swiss population. Thus, researchers should be attentive and aim to establish evidence of validity before using digital traces as a proxy for the true food consumption of a general population. We conclude by discussing the potential sources of these biases and their implications, outlining pitfalls and threats to validity, and proposing actionable ways for overcoming them.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.