Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

A Generic Algorithm for Top-K On-Shelf Utility Mining (2208.14230v1)

Published 27 Aug 2022 in cs.DB and cs.AI

Abstract: On-shelf utility mining (OSUM) is an emerging research direction in data mining. It aims to discover itemsets that have high relative utility in their selling time period. Compared with traditional utility mining, OSUM can find more practical and meaningful patterns in real-life applications. However, there is a major drawback to traditional OSUM. For normal users, it is hard to define a minimum threshold minutil for mining the right amount of on-shelf high utility itemsets. On one hand, if the threshold is set too high, the number of patterns would not be enough. On the other hand, if the threshold is set too low, too many patterns will be discovered and cause an unnecessary waste of time and memory consumption. To address this issue, the user usually directly specifies a parameter k, where only the top-k high relative utility itemsets would be considered. Therefore, in this paper, we propose a generic algorithm named TOIT for mining Top-k On-shelf hIgh-utility paTterns to solve this problem. TOIT applies a novel strategy to raise the minutil based on the on-shelf datasets. Besides, two novel upper-bound strategies named subtree utility and local utility are applied to prune the search space. By adopting the strategies mentioned above, the TOIT algorithm can narrow the search space as early as possible, improve the mining efficiency, and reduce the memory consumption, so it can obtain better performance than other algorithms. A series of experiments have been conducted on real datasets with different styles to compare the effects with the state-of-the-art KOSHU algorithm. The experimental results showed that TOIT outperforms KOSHU in both running time and memory consumption.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.