Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Towards making the most of NLP-based device mapping optimization for OpenCL kernels (2208.14124v1)

Published 30 Aug 2022 in cs.LG and cs.DC

Abstract: Nowadays, we are living in an era of extreme device heterogeneity. Despite the high variety of conventional CPU architectures, accelerator devices, such as GPUs and FPGAs, also appear in the foreground exploding the pool of available solutions to execute applications. However, choosing the appropriate device per application needs is an extremely challenging task due to the abstract relationship between hardware and software. Automatic optimization algorithms that are accurate are required to cope with the complexity and variety of current hardware and software. Optimal execution has always relied on time-consuming trial and error approaches. Machine learning (ML) and NLP has flourished over the last decade with research focusing on deep architectures. In this context, the use of natural language processing techniques to source code in order to conduct autotuning tasks is an emerging field of study. In this paper, we extend the work of Cummins et al., namely Deeptune, that tackles the problem of optimal device selection (CPU or GPU) for accelerated OpenCL kernels. We identify three major limitations of Deeptune and, based on these, we propose four different DNN models that provide enhanced contextual information of source codes. Experimental results show that our proposed methodology surpasses that of Cummins et al. work, providing up to 4\% improvement in prediction accuracy.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.