PercentMatch: Percentile-based Dynamic Thresholding for Multi-Label Semi-Supervised Classification (2208.13946v1)
Abstract: While much of recent study in semi-supervised learning (SSL) has achieved strong performance on single-label classification problems, an equally important yet underexplored problem is how to leverage the advantage of unlabeled data in multi-label classification tasks. To extend the success of SSL to multi-label classification, we first analyze with illustrative examples to get some intuition about the extra challenges exist in multi-label classification. Based on the analysis, we then propose PercentMatch, a percentile-based threshold adjusting scheme, to dynamically alter the score thresholds of positive and negative pseudo-labels for each class during the training, as well as dynamic unlabeled loss weights that further reduces noise from early-stage unlabeled predictions. Without loss of simplicity, we achieve strong performance on Pascal VOC2007 and MS-COCO datasets when compared to recent SSL methods.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.