Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

PercentMatch: Percentile-based Dynamic Thresholding for Multi-Label Semi-Supervised Classification (2208.13946v1)

Published 30 Aug 2022 in cs.CV

Abstract: While much of recent study in semi-supervised learning (SSL) has achieved strong performance on single-label classification problems, an equally important yet underexplored problem is how to leverage the advantage of unlabeled data in multi-label classification tasks. To extend the success of SSL to multi-label classification, we first analyze with illustrative examples to get some intuition about the extra challenges exist in multi-label classification. Based on the analysis, we then propose PercentMatch, a percentile-based threshold adjusting scheme, to dynamically alter the score thresholds of positive and negative pseudo-labels for each class during the training, as well as dynamic unlabeled loss weights that further reduces noise from early-stage unlabeled predictions. Without loss of simplicity, we achieve strong performance on Pascal VOC2007 and MS-COCO datasets when compared to recent SSL methods.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.