Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Modeling Spatial Trajectories using Coarse-Grained Smartphone Logs (2208.13775v1)

Published 29 Aug 2022 in cs.LG

Abstract: Current approaches for points-of-interest (POI) recommendation learn the preferences of a user via the standard spatial features such as the POI coordinates, the social network, etc. These models ignore a crucial aspect of spatial mobility -- every user carries their smartphones wherever they go. In addition, with growing privacy concerns, users refrain from sharing their exact geographical coordinates and their social media activity. In this paper, we present REVAMP, a sequential POI recommendation approach that utilizes the user activity on smartphone applications (or apps) to identify their mobility preferences. This work aligns with the recent psychological studies of online urban users, which show that their spatial mobility behavior is largely influenced by the activity of their smartphone apps. In addition, our proposal of coarse-grained smartphone data refers to data logs collected in a privacy-conscious manner, i.e., consisting only of (a) category of the smartphone app and (b) category of check-in location. Thus, REVAMP is not privy to precise geo-coordinates, social networks, or the specific application being accessed. Buoyed by the efficacy of self-attention models, we learn the POI preferences of a user using two forms of positional encodings -- absolute and relative -- with each extracted from the inter-check-in dynamics in the check-in sequence of a user. Extensive experiments across two large-scale datasets from China show the predictive prowess of REVAMP and its ability to predict app- and POI categories.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.