Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Understanding Diversity in Session-Based Recommendation (2208.13453v2)

Published 29 Aug 2022 in cs.IR

Abstract: Current session-based recommender systems (SBRSs) mainly focus on maximizing recommendation accuracy, while few studies have been devoted to improve diversity beyond accuracy. Meanwhile, it is unclear how the accuracy-oriented SBRSs perform in terms of diversity. Besides, the asserted "trade-off" relationship between accuracy and diversity has been increasingly questioned in the literature. Towards the aforementioned issues, we conduct a holistic study to particularly examine the recommendation performance of representative SBRSs w.r.t. both accuracy and diversity, striving for better understanding the diversity-related issues for SBRSs and providing guidance on designing diversified SBRSs. Particularly, for a fair and thorough comparison, we deliberately select state-of-the-art non-neural, deep neural, and diversified SBRSs, by covering more scenarios with appropriate experimental setups, e.g., representative datasets, evaluation metrics, and hyper-parameter optimization technique. Our empirical results unveil that: 1) non-diversified methods can also obtain satisfying performance on diversity, which might even surpass diversified ones; and 2) the relationship between accuracy and diversity is quite complex. Besides the "trade-off" relationship, they might be positively correlated with each other, that is, having a same-trend (win-win or lose-lose) relationship, which varies across different methods and datasets. Additionally, we further identify three possible influential factors on diversity in SBRSs (i.e., granularity of item categorization, session diversity of datasets, and length of recommendation lists).

Citations (8)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.