Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 30 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Shape optimization for contact problems in linear elasticity (2208.13413v1)

Published 29 Aug 2022 in math.OC, cs.NA, and math.NA

Abstract: This thesis deals with shape optimization for contact mechanics. More specifically, the linear elasticity model is considered under the small deformations hypothesis, and the elastic body is assumed to be in contact (sliding or with Tresca friction) with a rigid foundation. The mathematical formulations studied are two regularized versions of the original variational inequality: the penalty formulation and the augmented Lagrangian formulation. In order to get the shape derivatives associated to those two non-differentiable formulations, we suggest an approach based on directional derivatives. Especially, we derive sufficient conditions for the solution to be shape differentiable. This allows to develop a gradient-based topology optimization algorithm, built on these derivatives and a level-set representation of shapes. The algorithm also benefits from a mesh-cutting technique, which gives an explicit representation of the shape at each iteration, and enables to apply the boundary conditions strongly on the contact zone. The different steps of the method are detailed. Then, to validate the approach, some numerical results on two-dimensional and three-dimensional benchmarks are presented.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)