Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Statistical Inverse Problems in Hilbert Scales (2208.13289v1)

Published 28 Aug 2022 in math.ST, cs.LG, stat.ML, and stat.TH

Abstract: In this paper, we study the Tikhonov regularization scheme in Hilbert scales for the nonlinear statistical inverse problem with a general noise. The regularizing norm in this scheme is stronger than the norm in Hilbert space. We focus on developing a theoretical analysis for this scheme based on the conditional stability estimates. We utilize the concept of the distance function to establish the high probability estimates of the direct and reconstruction error in Reproducing kernel Hilbert space setting. Further, the explicit rates of convergence in terms of sample size are established for the oversmoothing case and the regular case over the regularity class defined through appropriate source condition. Our results improve and generalize previous results obtained in related settings.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)