Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 149 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Efficient liver segmentation with 3D CNN using computed tomography scans (2208.13271v1)

Published 28 Aug 2022 in eess.IV, cs.CV, and cs.LG

Abstract: The liver is one of the most critical metabolic organs in vertebrates due to its vital functions in the human body, such as detoxification of the blood from waste products and medications. Liver diseases due to liver tumors are one of the most common mortality reasons around the globe. Hence, detecting liver tumors in the early stages of tumor development is highly required as a critical part of medical treatment. Many imaging modalities can be used as aiding tools to detect liver tumors. Computed tomography (CT) is the most used imaging modality for soft tissue organs such as the liver. This is because it is an invasive modality that can be captured relatively quickly. This paper proposed an efficient automatic liver segmentation framework to detect and segment the liver out of CT abdomen scans using the 3D CNN DeepMedic network model. Segmenting the liver region accurately and then using the segmented liver region as input to tumors segmentation method is adopted by many studies as it reduces the false rates resulted from segmenting abdomen organs as tumors. The proposed 3D CNN DeepMedic model has two pathways of input rather than one pathway, as in the original 3D CNN model. In this paper, the network was supplied with multiple abdomen CT versions, which helped improve the segmentation quality. The proposed model achieved 94.36%, 94.57%, 91.86%, and 93.14% for accuracy, sensitivity, specificity, and Dice similarity score, respectively. The experimental results indicate the applicability of the proposed method.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.