Deep learning for automatic head and neck lymph node level delineation provides expert-level accuracy (2208.13224v2)
Abstract: Background: Deep learning (DL)-based head and neck lymph node level (HN_LNL) autodelineation is of high relevance to radiotherapy research and clinical treatment planning but still underinvestigated in academic literature. Methods: An expert-delineated cohort of 35 planning CTs was used for training of an nnU-net 3D-fullres/2D-ensemble model for autosegmentation of 20 different HN_LNL. A second cohort acquired at the same institution later in time served as the test set (n=20). In a completely blinded evaluation, 3 clinical experts rated the quality of DL autosegmentations in a head-to-head comparison with expert-created contours. For a subgroup of 10 cases, intraobserver variability was compared to the average DL autosegmentation accuracy on the original and recontoured set of expert segmentations. A postprocessing step to adjust craniocaudal boundaries of level autosegmentations to the CT slice plane was introduced and the effect on geometric accuracy and expert rating was investigated. Results: Blinded expert ratings for DL segmentations and expert-created contours were not significantly different. DL segmentations with slice plane adjustment were rated numerically higher (mean, 81.0 vs. 79.6,p=0.185) and DL segmentations without slice plane adjustment were rated numerically lower (77.2 vs. 79.6,p=0.167) than manually drawn contours. DL segmentations with CT slice plane adjustment were rated significantly better than DL contours without slice plane adjustment (81.0 vs. 77.2,p=0.004). Geometric accuracy of DL segmentations was not different from intraobserver variability (mean, 0.76 vs. 0.77, p=0.307). Conclusions: We show that a nnU-net 3D-fullres/2D-ensemble model can be used for highly accurate autodelineation of HN_LNL using only a limited training dataset that is ideally suited for large-scale standardized autodelineation of HN_LNL in the research setting.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.