Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Opinion Leader Detection in Online Social Networks Based on Output and Input Links (2208.13161v1)

Published 28 Aug 2022 in cs.SI and cs.AI

Abstract: The understanding of how users in a network update their opinions based on their neighbours opinions has attracted a great deal of interest in the field of network science, and a growing body of literature recognises the significance of this issue. In this research paper, we propose a new dynamic model of opinion formation in directed networks. In this model, the opinion of each node is updated as the weighted average of its neighbours opinions, where the weights represent social influence. We define a new centrality measure as a social influence metric based on both influence and conformity. We measure this new approach using two opinion formation models: (i) the Degroot model and (ii) our own proposed model. Previously published research studies have not considered conformity, and have only considered the influence of the nodes when computing the social influence. In our definition, nodes with low in-degree and high out-degree that were connected to nodes with high out-degree and low in-degree had higher centrality. As the main contribution of this research, we propose an algorithm for finding a small subset of nodes in a social network that can have a significant impact on the opinions of other nodes. Experiments on real-world data demonstrate that the proposed algorithm significantly outperforms previously published state-of-the-art methods.

Citations (1)

Summary

We haven't generated a summary for this paper yet.