Papers
Topics
Authors
Recent
2000 character limit reached

On Biased Behavior of GANs for Face Verification

Published 27 Aug 2022 in cs.CV, cs.AI, and cs.LG | (2208.13061v3)

Abstract: Deep Learning systems need large data for training. Datasets for training face verification systems are difficult to obtain and prone to privacy issues. Synthetic data generated by generative models such as GANs can be a good alternative. However, we show that data generated from GANs are prone to bias and fairness issues. Specifically, GANs trained on FFHQ dataset show biased behavior towards generating white faces in the age group of 20-29. We also demonstrate that synthetic faces cause disparate impact, specifically for race attribute, when used for fine tuning face verification systems.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.