Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Tensor Decomposition based Personalized Federated Learning (2208.12959v1)

Published 27 Aug 2022 in cs.LG

Abstract: Federated learning (FL) is a new distributed machine learning framework that can achieve reliably collaborative training without collecting users' private data. However, due to FL's frequent communication and average aggregation strategy, they experience challenges scaling to statistical diversity data and large-scale models. In this paper, we propose a personalized FL framework, named Tensor Decomposition based Personalized Federated learning (TDPFed), in which we design a novel tensorized local model with tensorized linear layers and convolutional layers to reduce the communication cost. TDPFed uses a bi-level loss function to decouple personalized model optimization from the global model learning by controlling the gap between the personalized model and the tensorized local model. Moreover, an effective distributed learning strategy and two different model aggregation strategies are well designed for the proposed TDPFed framework. Theoretical convergence analysis and thorough experiments demonstrate that our proposed TDPFed framework achieves state-of-the-art performance while reducing the communication cost.

Citations (1)

Summary

We haven't generated a summary for this paper yet.