Non-Markovian models of opinion dynamics on temporal networks (2208.12787v2)
Abstract: Traditional models of opinion dynamics, in which the nodes of a network change their opinions based on their interactions with neighboring nodes, consider how opinions evolve either on time-independent networks or on temporal networks with edges that follow Poisson statistics. Most such models are Markovian. However, in many real-life networks, interactions between individuals (and hence the edges of a network) follow non-Poisson processes and thus yield dynamics with memory-dependent effects. In this paper, we model opinion dynamics in which the entities of a temporal network interact and change their opinions via random social interactions. When the edges have non-Poisson interevent statistics, the corresponding opinion models are have non-Markovian dynamics. We derive an opinion model that is governed by an arbitrary waiting-time distribution (WTD) and illustrate a variety of induced opinion models from common WTDs (including Dirac delta distributions, exponential distributions, and heavy-tailed distributions). We analyze the convergence to consensus of these models and prove that homogeneous memory-dependent models of opinion dynamics in our framework always converge to the same steady state regardless of the WTD. We also conduct a numerical investigation of the effects of waiting-time distributions on both transient dynamics and steady states. We observe that models that are induced by heavy-tailed WTDs converge to a steady state more slowly than those with light tails (or with compact support) and that entities with larger waiting times exert a larger influence on the mean opinion at steady state.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.