Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Multi-Scale Architectures Matter: On the Adversarial Robustness of Flow-based Lossless Compression (2208.12716v1)

Published 26 Aug 2022 in cs.CV, cs.IT, and math.IT

Abstract: As a probabilistic modeling technique, the flow-based model has demonstrated remarkable potential in the field of lossless compression \cite{idf,idf++,lbb,ivpf,iflow},. Compared with other deep generative models (eg. Autoregressive, VAEs) \cite{bitswap,hilloc,pixelcnn++,pixelsnail} that explicitly model the data distribution probabilities, flow-based models perform better due to their excellent probability density estimation and satisfactory inference speed. In flow-based models, multi-scale architecture provides a shortcut from the shallow layer to the output layer, which significantly reduces the computational complexity and avoid performance degradation when adding more layers. This is essential for constructing an advanced flow-based learnable bijective mapping. Furthermore, the lightweight requirement of the model design in practical compression tasks suggests that flows with multi-scale architecture achieve the best trade-off between coding complexity and compression efficiency.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.