Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 150 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Multi tasks RetinaNet for mitosis detection (2208.12657v1)

Published 26 Aug 2022 in cs.CV

Abstract: The account of mitotic cells is a key feature in tumor diagnosis. However, due to the variability of mitotic cell morphology, it is a highly challenging task to detect mitotic cells in tumor tissues. At the same time, although advanced deep learning method have achieved great success in cell detection, the performance is often unsatisfactory when tested data from another domain (i.e. the different tumor types and different scanners). Therefore, it is necessary to develop algorithms for detecting mitotic cells with robustness in domain shifts scenarios. Our work further proposes a foreground detection and tumor classification task based on the baseline(Retinanet), and utilizes data augmentation to improve the domain generalization performance of our model. We achieve the state-of-the-art performance (F1 score: 0.5809) on the challenging premilary test dataset.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.