Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Training and Tuning Generative Neural Radiance Fields for Attribute-Conditional 3D-Aware Face Generation (2208.12550v3)

Published 26 Aug 2022 in cs.CV and cs.GR

Abstract: Generative Neural Radiance Fields (GNeRF)-based 3D-aware GANs have showcased remarkable prowess in crafting high-fidelity images while upholding robust 3D consistency, particularly face generation. However, specific existing models prioritize view consistency over disentanglement, leading to constrained semantic or attribute control during the generation process. While many methods have explored incorporating semantic masks or leveraging 3D Morphable Models (3DMM) priors to imbue models with semantic control, these methods often demand training from scratch, entailing significant computational overhead. In this paper, we propose a novel approach: a conditional GNeRF model that integrates specific attribute labels as input, thus amplifying the controllability and disentanglement capabilities of 3D-aware generative models. Our approach builds upon a pre-trained 3D-aware face model, and we introduce a Training as Init and Optimizing for Tuning (TRIOT) method to train a conditional normalized flow module to enable the facial attribute editing, then optimize the latent vector to improve attribute-editing precision further. Our extensive experiments substantiate the efficacy of our model, showcasing its ability to generate high-quality edits with enhanced view consistency while safeguarding non-target regions. The code for our model is publicly available at https://github.com/zhangqianhui/TT-GNeRF.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: