Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Few-Shot Learning Meets Transformer: Unified Query-Support Transformers for Few-Shot Classification (2208.12398v1)

Published 26 Aug 2022 in cs.CV

Abstract: Few-shot classification which aims to recognize unseen classes using very limited samples has attracted more and more attention. Usually, it is formulated as a metric learning problem. The core issue of few-shot classification is how to learn (1) consistent representations for images in both support and query sets and (2) effective metric learning for images between support and query sets. In this paper, we show that the two challenges can be well modeled simultaneously via a unified Query-Support TransFormer (QSFormer) model. To be specific,the proposed QSFormer involves global query-support sample Transformer (sampleFormer) branch and local patch Transformer (patchFormer) learning branch. sampleFormer aims to capture the dependence of samples in support and query sets for image representation. It adopts the Encoder, Decoder and Cross-Attention to respectively model the Support, Query (image) representation and Metric learning for few-shot classification task. Also, as a complementary to global learning branch, we adopt a local patch Transformer to extract structural representation for each image sample by capturing the long-range dependence of local image patches. In addition, a novel Cross-scale Interactive Feature Extractor (CIFE) is proposed to extract and fuse multi-scale CNN features as an effective backbone module for the proposed few-shot learning method. All modules are integrated into a unified framework and trained in an end-to-end manner. Extensive experiments on four popular datasets demonstrate the effectiveness and superiority of the proposed QSFormer.

Citations (26)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.