Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Uniform error estimate of an asymptotic preserving scheme for the Lévy-Fokker-Planck equation (2208.12302v2)

Published 25 Aug 2022 in math.NA, cs.NA, and math.AP

Abstract: We establish a uniform-in-scaling error estimate for the asymptotic preserving scheme proposed in \cite{XW21} for the L\'evy-Fokker-Planck (LFP) equation. The main difficulties stem from not only the interplay between the scaling and numerical parameters but also the slow decay of the tail of the equilibrium state. We tackle these problems by separating the parameter domain according to the relative size of the scaling $\epsilon$: in the regime where $\epsilon$ is large, we design a weighted norm to mitigate the issue caused by the fat tail, while in the regime where $\epsilon$ is small, we prove a strong convergence of LFP towards its fractional diffusion limit with an explicit convergence rate. This method extends the traditional AP estimates to cases where uniform bounds are unavailable. Our result applies to any dimension and to the whole span of the fractional power.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)