Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 104 tok/s
Gemini 3.0 Pro 36 tok/s Pro
Gemini 2.5 Flash 133 tok/s Pro
Kimi K2 216 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Video Mobile-Former: Video Recognition with Efficient Global Spatial-temporal Modeling (2208.12257v1)

Published 25 Aug 2022 in cs.CV

Abstract: Transformer-based models have achieved top performance on major video recognition benchmarks. Benefiting from the self-attention mechanism, these models show stronger ability of modeling long-range dependencies compared to CNN-based models. However, significant computation overheads, resulted from the quadratic complexity of self-attention on top of a tremendous number of tokens, limit the use of existing video transformers in applications with limited resources like mobile devices. In this paper, we extend Mobile-Former to Video Mobile-Former, which decouples the video architecture into a lightweight 3D-CNNs for local context modeling and a Transformer modules for global interaction modeling in a parallel fashion. To avoid significant computational cost incurred by computing self-attention between the large number of local patches in videos, we propose to use very few global tokens (e.g., 6) for a whole video in Transformers to exchange information with 3D-CNNs with a cross-attention mechanism. Through efficient global spatial-temporal modeling, Video Mobile-Former significantly improves the video recognition performance of alternative lightweight baselines, and outperforms other efficient CNN-based models at the low FLOP regime from 500M to 6G total FLOPs on various video recognition tasks. It is worth noting that Video Mobile-Former is the first Transformer-based video model which constrains the computational budget within 1G FLOPs.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.