Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Towards Benchmarking Explainable Artificial Intelligence Methods (2208.12120v1)

Published 25 Aug 2022 in cs.AI and cs.LG

Abstract: The currently dominating artificial intelligence and machine learning technology, neural networks, builds on inductive statistical learning. Neural networks of today are information processing systems void of understanding and reasoning capabilities, consequently, they cannot explain promoted decisions in a humanly valid form. In this work, we revisit and use fundamental philosophy of science theories as an analytical lens with the goal of revealing, what can be expected, and more importantly, not expected, from methods that aim to explain decisions promoted by a neural network. By conducting a case study we investigate a selection of explainability method's performance over two mundane domains, animals and headgear. Through our study, we lay bare that the usefulness of these methods relies on human domain knowledge and our ability to understand, generalise and reason. The explainability methods can be useful when the goal is to gain further insights into a trained neural network's strengths and weaknesses. If our aim instead is to use these explainability methods to promote actionable decisions or build trust in ML-models they need to be less ambiguous than they are today. In this work, we conclude from our study, that benchmarking explainability methods, is a central quest towards trustworthy artificial intelligence and machine learning.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.