Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

FusePose: IMU-Vision Sensor Fusion in Kinematic Space for Parametric Human Pose Estimation (2208.11960v1)

Published 25 Aug 2022 in cs.CV

Abstract: There exist challenging problems in 3D human pose estimation mission, such as poor performance caused by occlusion and self-occlusion. Recently, IMU-vision sensor fusion is regarded as valuable for solving these problems. However, previous researches on the fusion of IMU and vision data, which is heterogeneous, fail to adequately utilize either IMU raw data or reliable high-level vision features. To facilitate a more efficient sensor fusion, in this work we propose a framework called \emph{FusePose} under a parametric human kinematic model. Specifically, we aggregate different information of IMU or vision data and introduce three distinctive sensor fusion approaches: NaiveFuse, KineFuse and AdaDeepFuse. NaiveFuse servers as a basic approach that only fuses simplified IMU data and estimated 3D pose in euclidean space. While in kinematic space, KineFuse is able to integrate the calibrated and aligned IMU raw data with converted 3D pose parameters. AdaDeepFuse further develops this kinematical fusion process to an adaptive and end-to-end trainable manner. Comprehensive experiments with ablation studies demonstrate the rationality and superiority of the proposed framework. The performance of 3D human pose estimation is improved compared to the baseline result. On Total Capture dataset, KineFuse surpasses previous state-of-the-art which uses IMU only for testing by 8.6\%. AdaDeepFuse surpasses state-of-the-art which uses IMU for both training and testing by 8.5\%. Moreover, we validate the generalization capability of our framework through experiments on Human3.6M dataset.

Citations (8)

Summary

We haven't generated a summary for this paper yet.