Papers
Topics
Authors
Recent
2000 character limit reached

Lidar SLAM for Autonomous Driving Vehicles (2208.11855v1)

Published 25 Aug 2022 in cs.RO

Abstract: This paper presents Lidar-based Simultaneous Localization and Mapping (SLAM) for autonomous driving vehicles. Fusing data from landmark sensors and a strap-down Inertial Measurement Unit (IMU) in an adaptive Kalman filter (KF) plus the observability of the system are investigated. In addition to the vehicle's states and landmark positions, a self-tuning filter estimates the IMU calibration parameters as well as the covariance of the measurement noise. The discrete-time covariance matrix of the process noise, the state transition matrix, and the observation sensitivity matrix are derived in closed-form making them suitable for real-time implementation. Examining the observability of the 3D SLAM system leads to the conclusion that the system remains observable upon a geometrical condition on the alignment of the landmarks.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.