Papers
Topics
Authors
Recent
2000 character limit reached

A Perturbation Resistant Transformation and Classification System for Deep Neural Networks (2208.11839v1)

Published 25 Aug 2022 in cs.CV, cs.LG, and cs.NE

Abstract: Deep convolutional neural networks accurately classify a diverse range of natural images, but may be easily deceived when designed, imperceptible perturbations are embedded in the images. In this paper, we design a multi-pronged training, input transformation, and image ensemble system that is attack agnostic and not easily estimated. Our system incorporates two novel features. The first is a transformation layer that computes feature level polynomial kernels from class-level training data samples and iteratively updates input image copies at inference time based on their feature kernel differences to create an ensemble of transformed inputs. The second is a classification system that incorporates the prediction of the undefended network with a hard vote on the ensemble of filtered images. Our evaluations on the CIFAR10 dataset show our system improves the robustness of an undefended network against a variety of bounded and unbounded white-box attacks under different distance metrics, while sacrificing little accuracy on clean images. Against adaptive full-knowledge attackers creating end-to-end attacks, our system successfully augments the existing robustness of adversarially trained networks, for which our methods are most effectively applied.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.