Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 170 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Hyperparameter Optimization for Unsupervised Outlier Detection (2208.11727v2)

Published 24 Aug 2022 in cs.LG

Abstract: Given an unsupervised outlier detection (OD) algorithm, how can we optimize its hyperparameter(s) (HP) on a new dataset, without any labels? In this work, we address this challenging hyperparameter optimization for unsupervised OD problem, and propose the first systematic approach called HPOD that is based on meta-learning. HPOD capitalizes on the prior performance of a large collection of HPs on existing OD benchmark datasets, and transfers this information to enable HP evaluation on a new dataset without labels. Moreover, HPOD adapts a prominent sampling paradigm to identify promising HPs efficiently. Extensive experiments show that HPOD works with both deep (e.g., Robust AutoEncoder) and shallow (e.g., Local Outlier Factor (LOF) and Isolation Forest (iForest)) OD algorithms on discrete and continuous HP spaces, and outperforms a wide range of baselines with on average 58% and 66% performance improvement over the default HPs of LOF and iForest.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.