Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

AGO-Net: Association-Guided 3D Point Cloud Object Detection Network (2208.11658v1)

Published 24 Aug 2022 in cs.CV and cs.AI

Abstract: The human brain can effortlessly recognize and localize objects, whereas current 3D object detection methods based on LiDAR point clouds still report inferior performance for detecting occluded and distant objects: the point cloud appearance varies greatly due to occlusion, and has inherent variance in point densities along the distance to sensors. Therefore, designing feature representations robust to such point clouds is critical. Inspired by human associative recognition, we propose a novel 3D detection framework that associates intact features for objects via domain adaptation. We bridge the gap between the perceptual domain, where features are derived from real scenes with sub-optimal representations, and the conceptual domain, where features are extracted from augmented scenes that consist of non-occlusion objects with rich detailed information. A feasible method is investigated to construct conceptual scenes without external datasets. We further introduce an attention-based re-weighting module that adaptively strengthens the feature adaptation of more informative regions. The network's feature enhancement ability is exploited without introducing extra cost during inference, which is plug-and-play in various 3D detection frameworks. We achieve new state-of-the-art performance on the KITTI 3D detection benchmark in both accuracy and speed. Experiments on nuScenes and Waymo datasets also validate the versatility of our method.

Citations (30)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.