Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

PromptFL: Let Federated Participants Cooperatively Learn Prompts Instead of Models -- Federated Learning in Age of Foundation Model (2208.11625v1)

Published 24 Aug 2022 in cs.LG

Abstract: Quick global aggregation of effective distributed parameters is crucial to federated learning (FL), which requires adequate bandwidth for parameters communication and sufficient user data for local training. Otherwise, FL may cost excessive training time for convergence and produce inaccurate models. In this paper, we propose a brand-new FL framework, PromptFL, that replaces the federated model training with the federated prompt training, i.e., let federated participants train prompts instead of a shared model, to simultaneously achieve the efficient global aggregation and local training on insufficient data by exploiting the power of foundation models (FM) in a distributed way. PromptFL ships an off-the-shelf FM, i.e., CLIP, to distributed clients who would cooperatively train shared soft prompts based on very few local data. Since PromptFL only needs to update the prompts instead of the whole model, both the local training and the global aggregation can be significantly accelerated. And FM trained over large scale data can provide strong adaptation capability to distributed users tasks with the trained soft prompts. We empirically analyze the PromptFL via extensive experiments, and show its superiority in terms of system feasibility, user privacy, and performance.

Citations (89)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.