Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Hierarchical Reinforcement Learning Based Video Semantic Coding for Segmentation (2208.11529v1)

Published 24 Aug 2022 in eess.IV

Abstract: The rapid development of intelligent tasks, e.g., segmentation, detection, classification, etc, has brought an urgent need for semantic compression, which aims to reduce the compression cost while maintaining the original semantic information. However, it is impractical to directly integrate the semantic metric into the traditional codecs since they cannot be optimized in an end-to-end manner. To solve this problem, some pioneering works have applied reinforcement learning to implement image-wise semantic compression. Nevertheless, video semantic compression has not been explored since its complex reference architectures and compression modes. In this paper, we take a step forward to video semantic compression and propose the Hierarchical Reinforcement Learning based task-driven Video Semantic Coding, named as HRLVSC. Specifically, to simplify the complex mode decision of video semantic coding, we divided the action space into frame-level and CTU-level spaces in a hierarchical manner, and then explore the best mode selection for them progressively with the cooperation of frame-level and CTU-level agents. Moreover, since the modes of video semantic coding will exponentially increase with the number of frames in a Group of Pictures (GOP), we carefully investigate the effects of different mode selections for video semantic coding and design a simple but effective mode simplification strategy for it. We have validated our HRLVSC on the video segmentation task with HEVC reference software HM16.19. Extensive experimental results demonstrated that our HRLVSC can achieve over 39% BD-rate saving for video semantic coding under the Low Delay P configuration.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.