Papers
Topics
Authors
Recent
2000 character limit reached

A Graph Convolution for Signed Directed Graphs

Published 23 Aug 2022 in cs.LG and cs.AI | (2208.11511v3)

Abstract: A signed directed graph is a graph with sign and direction information on the edges. Even though signed directed graphs are more informative than unsigned or undirected graphs, they are more complicated to analyze and have received less research attention. This paper investigates a spectral graph convolution model to fully utilize the information embedded in signed directed edges. We propose a novel complex Hermitian adjacency matrix that encodes graph information via complex numbers. Compared to a simple connection-based adjacency matrix, the complex Hermitian can represent edge direction, sign, and connectivity via its phases and magnitudes. Then, we define a magnetic Laplacian of the proposed adjacency matrix and prove that it is positive semi-definite (PSD) for the analyses using spectral graph convolution. We perform extensive experiments on four real-world datasets. Our experiments show that the proposed scheme outperforms several state-of-the-art techniques.

Citations (3)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.