Papers
Topics
Authors
Recent
2000 character limit reached

Semi-supervised Semantic Segmentation with Mutual Knowledge Distillation (2208.11499v3)

Published 24 Aug 2022 in cs.CV

Abstract: Consistency regularization has been widely studied in recent semisupervised semantic segmentation methods, and promising performance has been achieved. In this work, we propose a new consistency regularization framework, termed mutual knowledge distillation (MKD), combined with data and feature augmentation. We introduce two auxiliary mean-teacher models based on consistency regularization. More specifically, we use the pseudo-labels generated by a mean teacher to supervise the student network to achieve a mutual knowledge distillation between the two branches. In addition to using image-level strong and weak augmentation, we also discuss feature augmentation. This involves considering various sources of knowledge to distill the student network. Thus, we can significantly increase the diversity of the training samples. Experiments on public benchmarks show that our framework outperforms previous state-of-the-art (SOTA) methods under various semi-supervised settings. Code is available at semi-mmseg.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.