Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Towards a Lower Bound for the Average Case Runtime of Simulated Annealing on TSP (2208.11444v1)

Published 24 Aug 2022 in cs.DS

Abstract: We analyze simulated annealing (SA) for simple randomized instances of the Traveling Salesperson Problem. Our analysis shows that the theoretically optimal cooling schedule of Hajek explores members of the solution set which are in expectation far from the global optimum. We obtain a lower bound on the expected length of the final tour obtained by SA on these random instances. In addition, we also obtain an upper bound on the expected value of its variance. These bounds assume that the Markov chain that describes SA is stationary, a situation that does not truly hold in practice. Hence, we also formulate conditions under which the bounds extend to the nonstationary case. These bounds are obtained by comparing the tour length distribution to a related distribution. We furthermore provide numerical evidence for a stochastic dominance relation that appears to exist between these two distributions, and formulate a conjecture in this direction. If proved, this conjecture implies that SA stays far from the global optimum with high probability when executed for any sub-exponential number of iterations. This would show that SA requires at least exponentially many iterations to reach a global optimum with nonvanishing probability.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.