Resolving Matrix Spencer Conjecture Up to Poly-logarithmic Rank (2208.11286v2)
Abstract: We give a simple proof of the matrix Spencer conjecture up to poly-logarithmic rank: given symmetric $d \times d$ matrices $A_1,\ldots,A_n$ each with $|A_i|{\mathsf{op}} \leq 1$ and rank at most $n/\log3 n$, one can efficiently find $\pm 1$ signs $x_1,\ldots,x_n$ such that their signed sum has spectral norm $|\sum{i=1}n x_i A_i|_{\mathsf{op}} = O(\sqrt{n})$. This result also implies a $\log n - \Omega( \log \log n)$ qubit lower bound for quantum random access codes encoding $n$ classical bits with advantage $\gg 1/\sqrt{n}$. Our proof uses the recent refinement of the non-commutative Khintchine inequality in [Bandeira, Boedihardjo, van Handel, 2022] for random matrices with correlated Gaussian entries.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.